wxMaxima Project II: Algebra Basics and Graphing

Instructions:

Go to:
http://www.scotchildress.com/wxmaxima/Variables_Functions_Equations/Variables_Function s and Equations.html
and
http://www.scotchildress.com/wxmaxima/Plotting/Plotting.html
Read and follow along with the calculations for:

- Variables, Functions, and Equations
- Graphing Funcitons Using Maxima

Then do the following:
Title and Stuff:

1. Create a title cell: ctrl+2 and type "wxMaxima Project II"
2. Below that create a text cell (ctrl+1) and write your name
3. Below that create a text cell (ctr+1) and write the date

Variables and Functions:

1. Create a section title by typing (ctrl+3) "Variables and Functions"
2. Define the variable Q to have the value of $3 \pi / 7$ by typing:
Q:3\%pi/7;

Use wxMaxima to calcuate:
a) $5 \mathrm{Q}-70 / \mathrm{Q}$
b) $\mathrm{Q}^{2}+\cos \left(2 \mathrm{Q}^{3}\right)$
c) Clean up by killing Q. Issue the command:
kill(Q);
3. Define the function:

$$
P(x)=\frac{x^{3}-2 \cos (x)}{x^{2}+1}
$$

by typing in:

$$
P(x):=\left(x^{\wedge} 3-2^{*} \cos (x)\right) /\left(x^{\wedge} 2+1\right)
$$

Then find:
a) $P(\pi / 4)$
b) $8 \mathrm{P}(\pi / 3)-2 \mathrm{P}(\pi / 6)$
c) Use float() to approximate $\mathrm{P}(\pi / 7)$.
d) $(\sqrt[3]{x}+1) P\left(x^{1 / 6}\right)$; For this one note that Maxima understands $\sqrt[3]{x}$ as a fractional power.
e) Clean up by killing P.
4. Define $f(x)=\sqrt{x}-2 \sqrt[3]{x}$ and $g(x)=x^{6}-2 x^{3}+3 x$.
a) Find $g(f(x))$
b) Force Maxima to carry out the exponentiation using: expand $(g(f(x))$.
c) Expand: $g\left(f\left(x^{12}\right)+x^{3}\right)$

Equations

1. Create a new section titled: "Equations"
2. Name an equation and define it by issuing the commands:

$$
\mathrm{E}: 3^{*} x+2=7
$$

a) Solve the equation by issuing the command: solve(E).
b) See what happens if you try: E^{2} or expand(E^{3}).
3. Try solving the equation: $4 x^{6}-16 x^{5}+17 x^{4}+3 x^{3}-11 x^{2}+x+2=0$ using the solve() command by:
a) defining $p(x)$ to be the polynomial above.
b) Enter: solve $(p(x)=0, x)$
c) Entering solve $(p(y)=0)$
d) Entering solve(p(z))
4. Using the $p(x)$ from the previous example:
a) solve the equation:

$$
p(x+y)=0
$$

for y.
b) Catch the solutions for the equation by: S: solve $(p(x+y)=0, y)$;
c) solve the second equation in the solution set for x by: solve(S[2],x);
5. In this example, we will solve an equation and catch the solutions. Define the functions:

$$
\begin{gathered}
f(x)=x^{2} \ln (x)+\frac{x^{2}}{2} \\
g(x)=\ln (x)+\frac{1}{2}
\end{gathered}
$$

Recall that Maxima calls $\ln (x)$ " $\log (x)$ ". Now solve and catch the solutions of $f(x)=g(x)$ by:
a) issuing the command: S: solve $(f(x)=g(x))$;
b) store the solutions into three variables r, s, and t by using rhs(S[1]), rhs(S[2]) and rhs(S[3]). Recall that setting a variable requires ":" not "=" !
c) Find $r(s)(t)-s^{3}$ (recall that you have to put * between parentheses when you want multiplcation!)
d) Kill r, s, t, S, f, and g all at once.
6. Solve the equation: $\sqrt{5 x-1}+\sqrt{x+1}=5$ by:
a) First loading to_poly_solve with the command: load(to_poly_solve)
b) then defining E to be the equation,
c) and finally by using: to_poly_solve(E, x).

Graphing

1. Create one final section titled "Graphing"
2. Use wxdraw2d() to graph $y=x^{3} \sin (x-\pi / 4)$ over the interval $[-2 \pi, 2 \pi]$. (The computers in the TMARC are a little slow, it might take a second).
3. Use wxdraw2d() to graph all of the following functions on the same set of axes over the interval [0,2]:
a) $f(x)=x^{2}$
b) $g(x)=(1-x)^{\wedge} 3+1 / 2$
c) $h(x)=\sin (4 \pi x)$
4. Redo problem \#2 but this time:
a) First define functions $s 1(x)=x^{2}, s 2(X)=(1-X)^{3}+1 / 2, s 3(x)=\sin (4 \pi x)$
b) Then plot all three on the same axes using the function names s1, s2, and s3 over $[0,2]$ in the plot command and
c) add a legend to your graph that points out that the curves are the functions named: "s1, s2," and "s3" and
d) add a label on the x-axis that reads: "Candy Bars Eaten" and a label on the y-axis that reads: "Disappointment" and
e) restrict the range so that $-1 \leq y \leq 3 / 2$, and finally
f) add a title to the graph that reads "Sugar Sadness Study"
5. Assign the equation

$$
3 x^{2}+2 x=e^{x}-2
$$

to the name EQN. (Recall that to get the exponential function you need to type: $\exp (x)$ or use $\% e^{\wedge x}$). Then:
a) Using lhs() and rhs() functions, graph the left hand side and the right hand side of EQN on the same set of axes over the interval [-1,5].
b) Redo the above over the interval [-0.5,0.5] to ensure that there is no solution of the equation at $x=0$.
c) Change the domain values (using xrange and yrange) in the wxdraw2d command to "zoom into" the intersection of the two curves. Zoom in to a point that gives the solution to the nearest hundredth.
d) Create a text cell (ctrl+1) to write down the approximate solution: "The solution to the equation is approximately..."

Export your solutions to HTML and print! Some of your answers will get clipped off the page - that's o.k.

